6,606 research outputs found

    A Beam Tracking System for Use in Orbital Dynamics Studies

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks

    Full text link
    Social networks existing among employees, customers or users of various IT systems have become one of the research areas of growing importance. A social network consists of nodes - social entities and edges linking pairs of nodes. In regular, one-layered social networks, two nodes - i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Nowadays data about people and their interactions, which exists in all social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but also gain understanding about semantic of human relations. Are they direct or not? Do people tend to sustain single or multiple relations with a given person? What types of communication is the most important for them? Answers to these and more questions enable us to draw conclusions about semantic of human interactions. Unfortunately, most of the methods used for social network analysis (SNA) may be applied only to one-layered social networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper, in particular: cross-layer clustering coefficient, cross-layer degree centrality and various versions of multi-layered degree centralities. Authors also investigated the dynamics of multi-layered neighbourhood for five different layers within the social network. The evaluation of the presented concepts on the real-world dataset is presented. The measures proposed in the paper may directly be used to various methods for collective classification, in which nodes are assigned to labels according to their structural input features.Comment: 16 pages, International Journal of Computational Intelligence System

    Clustering of vacancy defects in high-purity semi-insulating SiC

    Get PDF
    Positron lifetime spectroscopy was used to study native vacancy defects in semi-insulating silicon carbide. The material is shown to contain (i) vacancy clusters consisting of 4--5 missing atoms and (ii) Si vacancy related negatively charged defects. The total open volume bound to the clusters anticorrelates with the electrical resistivity both in as-grown and annealed material. Our results suggest that Si vacancy related complexes compensate electrically the as-grown material, but migrate to increase the size of the clusters during annealing, leading to loss of resistivity.Comment: 8 pages, 5 figure

    Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft

    Get PDF
    Hard X-ray (HXR) spectroscopy is the most direct method of diagnosing energetic electrons in solar flares. Here we present a technique which allows us to use a single HXR spectrum to determine an effectively stereoscopic electron energy distribution. Considering the Sun's surface to act as a 'Compton mirror' allows us to look at emitting electrons also from behind the source, providing vital information on downward-propagating particles. Using this technique we determine simultaneously the electron spectra of downward and upward directed electrons for two solar flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The results reveal surprisingly near-isotropic electron distributions, which contrast strongly with the expectations from the standard model which invokes strong downward beaming, including collisional thick-target model.Comment: 7 pages, 3 figures, accepted to Astrophysical Journal Letter

    Balloon-borne coded aperture telescope for arc-minute angular resolution at hard x-ray energies

    Get PDF
    We are working on the development of a new balloon-borne telescope, MARGIE (minute-of-arc resolution gamma ray imaging experiment). It will be a coded aperture telescope designed to image hard x-rays (in various configurations) over the 20 - 600 keV range with an angular resolution approaching one arc minute. MARGIE will use one (or both) of two different detection plane technologies, each of which is capable of providing event locations with sub-mm accuracies. One such technology involves the use of cadmium zinc telluride (CZT) strip detectors. We have successfully completed a series of laboratory measurements using a prototype CZT detector with 375 micron pitch. Spatial location accuracies of better than 375 microns have been demonstrated. A second type of detection plane would be based on CsI microfiber arrays coupled to a large area silicon CCD readout array. This approach would provide spatial resolutions comparable to that of the CZT prototype. In one possible configuration, the coded mask would be 0.5 mm thick tungsten, with 0.5 mm pixels at a distance of 1.5 m from the central detector giving an angular resolution of 1 arc-minute and a fully coded field of view of 12 degrees. We review the capabilities of the MARGIE telescope and report on the status of our development efforts and our plans for a first balloon flight

    Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal

    Get PDF
    This paper is devoted to a detailed analysis of the new type of the undulator radiation generated by an ultra-relativistic charged particle channeling along a crystal plane, which is periodically bent by a transverse acoustic wave, as well as to the conditions limiting the observation of this phenomenon. This mechanism makes feasible the generation of electromagnetic radiation, both spontaneous and stimulated, emitted in a wide range of the photon energies, from X- up to gamma-rays

    Obscured AGNS in Bulgeless Hosts Discovered By Wise : The Case Study of Sdss J1224+5555

    Get PDF
    There is mounting evidence that supermassive black holes form and grow in bulgeless galaxies. However, a robust determination of the fraction of AGNs in bulgeless galaxies, an important constraint to models of supermassive black hole seed formation and merger-free models of AGN fueling, is unknown, since optical studies have been shown to be incomplete for low mass AGNs. In a recent study using the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless galaxies that display mid-infrared signatures of extremely hot dust suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report X-ray follow-up observations of J122434.66+555522.3, a nearby (z=0.052) isolated bulgeless galaxy that contains an unresolved X-ray source detected at the 3 sigma level by XMM-Newton with an observed luminosity uncorrected for intrinsic absorption of L2-10~keV=1.1+/-0.4 1040 ergs s-1. Ground-based near-infrared spectroscopy with the Large Binocular Telescope together with multiwavelength observations from ultraviolet to millimeter wavelengths together suggest that J1224+5555 harbors a highly absorbed AGN with an intrinsic absorption of ~NH \u3e1024 cm-2. The hard X-ray luminosity of the putative AGN corrected for absorption is L2-10~keV~3x1042 ergs s-1, which, depending on the bolometric correction factor, corresponds to a bolometric luminosity of the AGN of 6x1043 ergs s-1 - 3x1044 erg s-1, and a lower mass limit for the black hole of MBH~2x106 Msun, based on the Eddington limit. While enhanced X-ray emission and hot dust can be produced by star formation in extremely low metallicity environments typical in dwarf galaxies, J1224+5555 has a stellar mass of ~2.0 x 1010 Msun and an above solar metallicity (12 + logO/H = 9.11), typical of our WISE-selected bulgeless galaxy sample. While collectively these observations suggest the presence of an AGN, we caution that identifying obscured AGNs in the low-luminosity regime is challenging and often requires multiwavelength observations. These observations suggest that low-luminosity AGNs can be heavily obscured and reside in optically quiescent galaxies, adding to the growing body of evidence that the fraction of bulgeless galaxies with accreting black holes may be significantly underestimated based on optical studies

    HST Observations of SGR 0526-66: New Constraints on Accretion and Magnetar Models

    Get PDF
    Soft Gamma-ray Repeaters (SGRs) are among the most enigmatic sources known today. Exhibiting huge X- and Gamma-ray bursts and flares, as well as soft quiescent X-ray emission, their energy source remains a mystery. Just as mysterious are the Anomalous X-ray pulsars (AXPs), which share many of the same characteristics. Thanks to recent Chandra observations, SGR 0526-66, the first SGR, now appears to be a transition object bridging the two classes, and therefore observations of it have implications for both SGRs and AXPs. The two most popular current models for their persistent emission are accretion of a fossil disk or decay of an enormous (~10^15 G) magnetic field in a magnetar. We show how deep optical observations of SGR 0526-66, the only SGR with small enough optical extinction for meaningful observations, show no evidence of an optical counterpart. These observation place strong new constraints on both accretion disk and magnetar models, and suggest that the spectral energy distribution may peak in the hard-UV. Almost all accretion disks are excluded by the optical data, and a magnetar would require a ~10^15-10^16 G field.Comment: 23 pages, 5 figures. Accepted by Ap

    Two Derivations of the Master Equation of Quantum Brownian Motion

    Get PDF
    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. This aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the ``preferred basis'' for decoherence in this model.Comment: 19 pages, RevTe
    corecore